Осевой вектор - определение. Что такое Осевой вектор
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Осевой вектор - определение

ВЕЛИЧИНА, КОМПОНЕНТЫ КОТОРОЙ ПРЕОБРАЗУЮТСЯ КАК ВЕКТОР, НО ЗНАК ЗАВИСИТ ОТ ОРИЕНТАЦИИ СИСТЕМЫ КООРДИНАТ
Псевдовектор; Осевой вектор
  • После инверсии два вектора меняют свой знак, однако их векторное произведение остаётся неизменным.
Найдено результатов: 128
Осевой вектор         

вектор в ориентированном пространстве, который при изменении ориентации пространства на противоположную преобразуется в противоположный вектор. Примером О. в. может служить Векторное произведение. О. в. называется также псевдовектором, или аксиальным вектором.

Аксиальный вектор         
(от лат. axis - ось)

то же, что Осевой вектор.

Аксиальный вектор         
Аксиальный вектор, или псевдовектор, — величина, компоненты которой преобразуются как компоненты обычного (истинного) вектора при поворотах системы координат, но меняющие свой знак противоположно тому, как ведут себя компоненты вектора при любой инверсии (обращении знака) координат, меняющей ориентацию базиса (в трехмерном пространстве с правой на левую или наоборот; таким преобразованием может быть, например, зеркальное отражение, в простейшем случае — зеркальное отражение одной координатной оси).Речь идет о преобразовании векторов базиса с матри
Псевдовектор         

то же, что Осевой вектор, в другом словоупотреблении - вектор, определённый с точностью до произвольного числового множителя (вектор-направление). Например, Однородные координаты x1, x2, x3, x4 точки в 3-мерном пространстве при фиксированной системе координат можно рассматривать как компоненты (координаты) четырёхмерного П. во втором смысле этого слова.

Вектор (математика)         
ЭЛЕМЕНТ ВЕКТОРНОГО ПРОСТРАНСТВА
Компонента вектора; Направленный отрезок; Модуль вектора; Геометрический вектор; Длина вектора; Векторная сумма; Евклидов вектор; Арифметический вектор; Математический вектор
Ве́ктор (от — «перевозчик», «переносчик», «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Вектор (молекулярная биология)         
  • Рис. 2. Взаимодействие плазмиды с чужеродной ДНК
  • Рис. 1. Карта плазмиды pBR 322
ГЕНЕТИЧЕСКИЙ МЕХАНИЗМ - МОЛЕКУЛА НУКЛЕИНОВОЙ КИСЛОТЫ, ЧАЩЕ ВСЕГО ДНК, ИСПОЛЬЗУЕМАЯ В ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ ДЛЯ ПЕРЕДАЧИ ГЕНЕТИЧЕСКОГО МА
Вектор (биология)
Вектор (в генетике и молекулярной биологии) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала внутрь клетки, в том числе в клетку живого многоклеточного организма in vivoСм. вирусные векторы..
Вектор Бюргерса         
  • Определение вектора Бюргерса
Бюргерса вектор
Вектор Бю́ргерса (b) — количественная характеристика, описывающая искажения кристаллической решётки вокруг дислокации.
Нулевой вектор         
Нуль-вектор
Нулевой вектор (нуль-вектор) — вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается \vec{0} или \mathbf{0}.
Пойнтинга вектор         
  • '''напряжённость магнитного поля ''H'''''}}<br>Вокруг батареи вектор Пойнтинга направлен от батареи, что свидетельствует о переносе энергии из батареи; вокруг резистора вектор Пойнтинга направлен к резистору, что говорит о переносе энергии в резистор; поток вектора Пойнтинга через любую плоскость Р между батареей и резистором — направлен от батареи к резистору.
ВЕКТОР ПЛОТНОСТИ ПОТОКА ЭНЕРГИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
Интенсивность света; Вектор Умова-Пойнтинга; Пойнтинга вектор; Плотность потока электромагнитной энергии; Вектор плотности потока электромагнитной энергии; Вектор Умова — Пойнтинга

вектор плотности потока электромагнитной энергии. Назван по имени английского физика Дж. Г. Пойнтинга (J. Н. Poynting; 1852-1914). Модуль П. в. равен энергии, переносимой за единицу времени через единицу поверхности, перпендикулярной к направлению распространения электромагнитной энергии (т. е. к направлению П. в.). В абсолютной системе единиц (Гаусса) П [EH], где [EH] - векторное произведение напряжённостей электрического Е и магнитного Н полей, с - скорость света в вакууме; в СИ П = [Eh]. Поток П. в. через замкнутую поверхность, ограничивающую систему заряженных частиц, даёт величину энергии, теряемой системой за единицу времени вследствие излучения электромагнитных волн (см. Максвелла уравнения). Плотность импульса электромагнитного поля (выражается через П. в.: g = П.

Г. Я. Мякишев.

Вектор Лапласа — Рунге — Ленца         
  • Рис. 9: Уровни энергии водородного атома, предсказанные с использованием коммутационных соотношений углового момента и векторных операторов Лапласа — Рунге — Ленца; эти уровни энергии были проверены экспериментально.
  • стереографической проекции]] больших кругов из четырёхмерной <math>\scriptstyle\eta</math> сферы единичного радиуса. Все большие круги пересекают <math>\scriptstyle\eta_x</math> ось, которая направлена перпендикулярно странице. Проекция из северного полюса (единичный вектор <math>\scriptstyle \mathbf{w}</math>) к (<math>\scriptstyle\eta_x</math>-<math>\scriptstyle\eta_y</math>) плоскости, как показано для пурпурного годографа пунктирной чёрной линией. Большой круг на широте <math>\scriptstyle \alpha</math> соответствует [[эксцентриситет]]у <math>\scriptstyle e=\sin\alpha</math>. Цвета больших кругов, показанных здесь, соответствуют цветам их годографов на рис. 7.
  • теоремы о вписанном угле]] для [[круг]]а следует, что <math>\scriptstyle \eta</math> является также углом между любой точкой на окружности и двумя точками пересечения окружности с осью <math>\scriptstyle p_x</math>, <math>\scriptstyle p_x=\pm p_0</math>.
  • биполярных координат]].
  • Рис. 3: Вектор углового момента <math>\scriptstyle\mathbf{L}</math>, вектор Лапласа — Рунге — Ленца <math>\scriptstyle\mathbf{A}</math> и вектор Гамильтона, [[бинормаль]] <math>\scriptstyle\mathbf{B}</math>, являются взаимно перпендикулярными; <math>\scriptstyle\mathbf{A}</math> и <math>\scriptstyle \mathbf{B}</math> указывают на большую и на малую полуоси, соответственно, эллиптической орбиты в задаче Кеплера.
  • ниже]]. Вектор <math>\scriptstyle\mathbf{A}</math> является постоянным по направлению и величине.
  • Рис. 4: Упрощённая версия рис. 1. Определяется угол <math>\theta</math> между <math>\scriptstyle \mathbf{A}</math> и <math>\scriptstyle\mathbf{r}</math> в одной точке орбиты.
  • прецессирующая]] эллиптическая орбита, с эксцентриситетом <math>\scriptstyle e=0{,}9</math>. Такая прецессия возникает в проблеме Кеплера, если притягивающая [[центральная сила]] немного отличается от закона тяготения Ньютона. Скорость прецессии можно вычислить, используя приведённые в параграфе формулы.
  • Рис. 6: Преобразование Ли, из которого выводится сохранение вектора Лапласа — Рунге — Ленца <math>\scriptstyle\mathbf{A}</math>. Когда масштабируемый параметр <math>\scriptstyle \lambda</math> изменяется, энергия и угловой момент тоже меняются, но эксцентриситет <math>\scriptstyle e</math> и вектор <math>\scriptstyle\mathbf{A}</math> не изменяются.
ВЕКТОР, В ОСНОВНОМ ИСПОЛЬЗУЕМЫЙ ДЛЯ ОПИСАНИЯ ФОРМЫ И ОРИЕНТАЦИИ ОРБИТЫ, ПО КОТОРОЙ ОДНО НЕБЕСНОЕ ТЕЛО ОБРАЩАЕТСЯ ВОКРУГ ДРУГОГО (НАПРИМЕР,
Вектор эксцентриситета; Вектор Лапласа-Рунге-Ленца; Вектор Лапласа; Вектор Рунге — Ленца
В классической механике ве́ктором Лапла́са — Ру́нге — Ле́нца называется вектор, в основном используемый для описания формы и ориентации орбиты, по которой одно небесное тело обращается вокруг другого (например, орбиты, по которой планета вращается вокруг звезды). В случае с двумя телами, взаимодействие которых описывается законом всемирного тяготения Ньютона, вектор Лапласа — Рунге — Ленца представляет собой интеграл движения, то есть его направление и величина являются постоянными независимо от того, в какой точке орбиты они вычисляются; в сети �

Википедия

Аксиальный вектор

Аксиальный вектор, или псевдовектор, — величина, компоненты которой преобразуются как компоненты обычного (истинного) вектора при поворотах системы координат, но меняющие свой знак противоположно тому, как ведут себя компоненты вектора при любой инверсии (обращении знака) координат, меняющей ориентацию базиса (в трехмерном пространстве с правой на левую или наоборот; таким преобразованием может быть, например, зеркальное отражение, в простейшем случае — зеркальное отражение одной координатной оси). То есть псевдовектор меняет направление на противоположное при сохранении абсолютной величины (домножается на «-1») при любой такой инверсии координатной системы.

Графически изображённый псевдовектор при таком изменении координат меняет направление на противоположное.

Для того чтобы подчеркнуть отличие настоящего вектора, координаты которого всегда преобразуются так же, как координаты вектора перемещения, настоящий вектор называют истинным, или полярным, вектором.

Простейшим примером аксиального вектора в трёхмерном пространстве является векторное произведение двух полярных векторов, например, в механике — момент импульса L = r × p {\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} } , и момент силы M = r × F {\displaystyle \mathbf {M} =\mathbf {r} \times \mathbf {F} } , в четырёхмерном пространстве — аксиальный ток.

В рамках внешней алгебры псевдовектор представлен (n-1)-вектором n-мерного пространства. Геометрически простой (n-1)-вектор представляет собой ориентированное подпространство, перпендикулярное некоторой оси. Таким образом в трёхмерном пространстве псевдовектором является бивектор, который можно в свою очередь представить как ориентированную плоскость.

Что такое Осев<font color="red">о</font>й в<font color="red">е</font>ктор - определение